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ABSTRACT

Identifying the conditions and mechanisms that
control ecosystem processes, such as net primary
production, is a central goal of ecosystem ecology.
Ideas have ranged from single limiting-resource
theories to colimitation by nutrients and climate,
to simulation models with edaphic, climatic, and
competitive controls. Although some investigators
have begun to consider the influence of land-use
practices, especially cropping, few studies have
quantified the impact of cropping at large scales
relative to other known controls over ecosystem
processes. We used a 9-year record of produc-
tivity, biomass seasonality, climate, weather, soil
conditions, and cropping in the US Great Plains
to quantify the controls over spatial and temporal
patterns of net primary production and to esti-
mate sensitivity to specific driving variables. We
considered climate, soil conditions, and long-term
average cropping as controls over spatial patterns,
while weather and interannual cropping varia-
tions were used as controls over temporal vari-
ability. We found that variation in primary

production is primarily spatial, whereas variation
in seasonality is more evenly split between spatial
and temporal components. Our statistical (multi-
ple linear regression) models explained more of
the variation in the amount of primary produc-
tion than in its seasonality, and more of the
spatial than the temporal patterns. Our results
indicate that although climate is the most
important variable for explaining spatial patterns,
cropping explains a substantial amount of the
residual variability. Soil texture and depth con-
tributed very little to our models of spatial vari-
ability. Weather and cropping deviation both
made modest contributions to the models of
temporal variability. These results suggest that the
controls over seasonality and temporal variation
are not well understood. Our sensitivity analysis
indicates that production is more sensitive to
climate than to weather and that it is very sen-
sitive to cropping intensity. In addition to iden-
tifying potential gaps in out knowledge, these
results provide insight into the probable long-
and short-term ecosystem response to changes in
climate, weather, and cropping.
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INTRODUCTION

Predicting ecosystem response to global environ-
mental change has become an important objective
for ecosystem scientists, but robust predictions re-
quire an understanding of how environmental and
land-use conditions influence ecosystem processes.
Most efforts to improve our understanding of the
controls over ecosystem processes have focused on
relating them to climatic (for example, Rosenzweig
1968; Lieth1975; Burke andothers 1997;Austin and
Vitousek 1998), edaphic (Jenny 1941; Noy-Meir
1973), and weather (Burke and others. 1991; Tian
and others 1998; Potter and others 1999) conditions.
However, recent studies have attempted to examine
how land-use practices—notably, agricultural crop-
ping—influence ecosystem processes (Vitousek
1992; Houghton and others 1999; Guerschman and
others 2003). Although the consequences of agri-
cultural land use for ecosystem processes have been
examined at individual sites, few studies have at-
tempted to quantify the magnitude and nature of
land-use effects at large spatial and temporal scales
(for example, Burke 2000). As human population
grows, the need for food will continue to increase,
necessitating continued cropping in current agri-
cultural areas and the conversion of additional areas
(Cassman 1999, Tilman and others 2002). Insight
into the relationships among cropping practices,
environmental conditions, and spatiotemporal pat-
terns of changes in ecosystemprocesses is essential to
understanding the consequences of these practices.

In this study, we quantified how environmental
conditions and cropping practices influence net
primary production (NPP) and seasonality of
aboveground biomass in the US Great Plains. Net
primary production is the amount of carbon fixed
by plants minus plant respiration and is, at least
above ground, one of the best-understood ecosys-
tem processes. Whereas NPP is one measure of total
annual ecosystem function, seasonal patterns of
aboveground biomass provide insight into how
ecosystems respond to fluctuations in environ-
mental conditions within a year.

The US Great Plains is well suited for examining
the relationship among environmental controls,
land use and ecosystem processes because this area
has high cropping intensity and the environmental
influences on the ecosystem processes of its native
vegetation are well established. Precipitation is
positively related to grassland production across
space and through time, although the slope of the
spatial relationship is greater, implying that at a
particular location ecosystems may not respond
immediately to altered conditions (Lauenroth and

Sala 1992). The effect of temperature on primary
production in grasslands depends on the interaction
with precipitation and subsequent influence on
water availability (Lauenroth 1979). In water-lim-
ited areas, warmer temperatures can lower water
availability and decrease the production of native
grasslands (for example, Epstein and others 1997;
Gill and others 2002) and agricultural areas (Lobell
and Asner 2003). However, in wetter areas, warmer
temperatures have less influence on water avail-
ability and can increase production by promoting
longer growing seasons and faster photosynthetic
rates (for example, Lauenroth and others 1999).
Environmental conditions also influence biomass
seasonality by dictating photoperiod, temperature,
and water availability (Rathcke and Lacey 1985;
Bonen 2002; Jobbagy and others 2002).

Soil properties can also influence production in
grasslands, although the nature of their influence
is not consistent. Noy-Meir (1973) proposed an
‘‘inverse texture effect’’, which suggests that
coarse-textured soils enable greater water infiltra-
tion, and have less evaporative water loss, thereby
supporting higher production in dry areas than
fine-textured soils. By contrast, wetter areas in
which water loss occurs primarily via drainage
support higher production in fine-textured soils
with high water-holding capacity (Sala and others
1988; Epstein and others 1997).

The effect of cropping, in contrast to native veg-
etation, on NPP, has received relatively limited
attention and has generally been investigated only
at small scales. Crops have typically been selected to
maximize aboveground yield while generating only
enough roots to obtain the necessary water and
nutrient resources. Consequently, site-level studies
have shown that cropping generally increases
aboveground production while having only modest
effects on belowground production (Buyanovsky
and others 1987), and recent analyses have quan-
tified this impact at regional scales (Guerschman
and others 2003, Bradford and others 2005b). The
impact of cropping on aboveground biomass sea-
sonality is readily apparent at small scales, but it
varies among crops; thus, the cumulative effects at
large scales are unclear. Single-species cropping of
annual plants not only causes an abrupt start and
end to the growing season, with consequences for
growing-season length, but also potentially influ-
ences the overall timing of growth patterns. Some
crops are planted only after soil temperatures rise to
a particular level and thus initiate growth well after
native plants, whereas other crops are harvested
before native plants cease growth (Martin and
others 1976).
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The overall goal of this study was to create
statistical models of the relative importance of
cropping on NPP and its seasonality relative to
known controls such as climate (long-term con-
ditions), weather (annual variation), and soil
conditions. We used variance decomposition
techniques to examine how environmental con-
ditions and cropping practices relate to the ob-
served variability in NPP and its seasonality in the
grassland ecosystems of the Great Plains. Specifi-
cally, our objectives were to (a) partition the
variance of production and biomass seasonality
into spatial and temporal components and create
statistical models for these variance components;
(b) use the models to quantify the relative
importance of cropping, climate, soil conditions,
and weather to our understanding of the patterns
in these ecosystem processes; and (c) combine the
best spatial and temporal models to create an
overall model that could be used to predict the
sensitivity of production and biomass seasonality
to changes in climate, weather, soil conditions,
and cropping intensity.

METHODS

Study site

We conducted this study in the US Great Plains,
which includes 23% of the contiguous United
States and extends from the Canadian border into
south Texas and from the Rocky Mountains to
approximately the 95th parallel (Figure 1). The
Great Plains is ideal for this study because it con-
tains a wide range of both cropping intensities and
climatic conditions. Precipitation occurs primarily
during the summer months, and mean annual
precipitation (MAP) varies from under 400 mm in
the west to nearly 1,000 mm in the east. Mean
annual temperature (MAT) increases from 3!C in
the north to 21!C in the south (Lauenroth and
Burke 1995). Land use is primarily agricultural,
with grazed native grassland, dryland cropland, and
irrigated cropland in the west, wheat in the central
part of the region, and nearly contiguous corn/
wheat in the east.
We included counties that historically contained

at least 70% of the following vegetation types:
northern mixed-grass prairie, shortgrass steppe,
tallgrass prairie, tallgrass savanna, southern mixed-
grass prairie, desert savanna, and floodplain forests.
Using these restrictions we identified 630 counties
within the Great Plains that were suitable for this
study (Figure 1). We collected data for the years
1991–98 for these counties.

Net Primary Production and Biomass
Seasonality

We calculated annual production and its seasonal-
ity for each county for the years 1990 through
1998. To estimate production, we used a modified
version of the Carnegie Ames Stanford approach
(CASA). CASA relies on methods developed by
Monteith (1972, 1977) that enable estimates of
plant production from remotely sensed observa-
tions (8-km resolution AVHRR data) of absorbed
photosynthetically active radiation (APAR) and
estimates of light-use efficiency (LUE). We used the
APAR estimates from CASA described in Hicke and
others (2002) and the LUE estimates from Bradford
and others (2005a) to generate county-level NPP
data for the years 1990–98.

To partition the NPP estimates into above-
ground and belowground production, we calcu-
lated an allocation ratio for each county. This
ratio is an area-weighted average of allocation to
cropped areas and allocation to native grassland.
For cropped areas, we used published allocation
ratios for each crop (see Appendix 1 at http://
www.springerlink.com). For allocation ratios in
uncropped areas, we used relationships identified
by Gill and others (2002), which suggest that
grassland belowground NPP can be estimated
from maximum yearly instantaneous below-
ground biomass, belowground live biomass frac-
tion, and MAT, as calculated by Bradford and
others (2005b).

We chose two indicators of seasonality: the
length of the growing season and the date of
maximum Normalized Difference Vegetation Index
(NDVI). Date of maximum NDVI is an indicator of
the time when photosynthetic activity is highest
during the growing season (reported as the day of
the year) and provides insight into the timing of
events within the active period. Growing-season
length was determined by estimating the beginning
and end of the growing season and calculating the
number of days between these dates. Reed and
others (1994) developed a method for determining
these dates that is based on identifying a substantial
change in the NDVI patterns through time. The
start of the season is defined as the date in the
spring when the NDVI begins to increase; the end
of the growing season is defined as the date when
the NDVI stops decreasing.

Data Sources

Our climate data were derived from a database of
30-year monthly weather records from over 200
weather stations archived by CLIMATEDATA
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Figure 1. The US Great Plains region, with general patterns of mean annual precipitation and mean annual temperature,
cropping intensity (average percent of each county under cultivation), subregion boundaries (indicated on small map),
spatial patterns (averaged over all years) of the four response variables. ANPP, aboveground net primary production;
BNPP, belowground net primary production; LENGTH, length of growing season; DATEM date of maximum Normalized
Difference Vegetation Index (NDVI).
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(1988). We used soil texture (percent clay and sand)
and depth information from the USDA STATSGO
database (USDA 1989; also see http://
www.ftw.nrcs.usda.gov/stat_data.html). Monthly
weather data for over 200 individual weather
stations across the region were obtained from the
National Climate Data Center at http://cdo.ncdc.
noaa.gov/plclimprod/plsql/somdmain.somdwr-
apper?datasetabbv=TD3220&countryabbv=&GEO-
Regionabbv=&Forceoutside for the years 1990–98.
Climate and weather information were entered into
a GIS and interpolated into a 1-km GRID using the
trend surface method in ArcInfo (ESRI 1996) from
points (weather stations) into a surface covering the
study area. We overlaid the climate and weather
maps with soil information and extracted county
means for the 630 counties in this study. We ob-
tained cultivation data from the National Agricul-
tural Statistics Service (NASS 1988; also see http://
www.nass.usda.gov:81/ipedb/), which maintains
records of crop area and yield for all US counties.

Partitioning Variability into Space and
Time

Our objective of variance partitioning was to
characterize the variation in aboveground NPP
(ANPP), belowground NPP (BNPP), growing-sea-
son length, and date of maximum NDVI. Decom-
posing the observed variation into spatial and
temporal components and examining the controls
over those variance components is one approach
(Box and others 1978). Total variation (r2total
observed in ecosystem processes over a region can
be partitioned into spatial variation (r2spatial, or dif-
ferences from one location to another averaged
across all years) and temporal variation (r2temporal, or
variation at a single location through time):

r2total ¼ r2spatial þ r2temporal ð1Þ

The spatial and temporal components can be ex-
plained by examining the forces that dictate those
sources of variability. Spatial variation is modeled
by including sources of variation that change only
across space and not through time:

r2spatial ¼ r2model þ r2residual ¼ r2climate þ r2soil þ r2cropmean

þ r2spatial residual
ð2Þ

where r2model is the variation explained by any
particular model; r2spatial residual is the variation not
explained by the spatial model; and r2climate, r2soil,
and r2cropmean are the variation explained by
variables representing climate conditions, soil

properties, and mean cropping intensity, respec-
tively. Similarly, temporal variation can be mod-
eled by including sources of variation that fluctuate
only through time:

r2temporal ¼ r2model þ r2residual ¼ r2weather þ r2cropdev

þ r2temporal residual

ð3Þ

where r2weather and r2cropdev are the variation ex-
plained by the variables representing weather
deviations from the climatic means and deviation
from the mean cropping intensity, respectively.

To generate overall predictions from spatial and
temporal models, it is necessary to combine them
into a single model that explains the total observed
variability. Total variation can be expressed as:

r2total ¼ r2model þ r2residual ¼ r2climate þ r2soil þ r2cropmean

þ r2weather þ r2cropdev þ r2total residual
ð4Þ

Statistical Modeling of Spatial,
Temporal, and Overall Variation

To characterize the influence of driving variables
on variability in production and biomass season-
ality, we first partitioned the variance into spatial
and temporal components, and then generated
independent predictive models for each type of
variation. We calculated mean annual production
and biomass seasonality values for each county
and considered the variability in the set of indi-
vidual deviations from the overall mean to rep-
resent spatial variability. To represent temporal
variability, we calculated the annual deviation
from the mean production or biomass seasonality
for each county. Because the magnitude of vari-
ation in both space and time depends on the
spatial and temporal scales chosen, we used a 9-
year record (1990–98) that includes substantial
inter-annual variation.

To determine the effect of climate, soil, weather,
and cultivation variables on production and bio-
mass seasonality, a candidate set of a priori multiple
linear regression models was developed for each
combination of variation type (for example, spatial
or temporal) and response variable (for example,
ANPP, BNPP, growing-season length, and date of
maximum NDVI). The spatial models included
various combinations of parameters for climate
(MAT and MAP), soil texture (percent sand and
clay and depth of the A horizon), and mean crop-
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ped area for the 12 major crops in the region
(Tables 1 and 2). Temporal models were generated
by selecting the best combination of weather
parameters (calculated as deviation in temperature
and precipitation from the climate values) and then
including deviations in cropped area for specific
crops (deviation from the 9-year mean). The results
presented here used mean annual values for both
climate and weather variables. Although we at-
tempted analyses with seasonal and monthly rep-
resentations of temperature and precipitation
(results not shown), the mean annual values
proved to be more useful for explaining both spatial
and temporal patterns in primary productivity and
biomass seasonality. We used actual measures of
precipitation and temperature rather than an index
of drought severity or water availability for the
following reasons: First, in the Great Plains, where
water is limiting and precipitation occurs primarily
in the summer, MAP is strongly related to NPP
(Lauenroth 1979; Sala and others 1988; Burke and
others 1997; Lauenroth and others 2000), and MAT
and soil properties explain much of the remaining
variation (Epstein and others 1997; Gill and others
2002). Second, because the objective of this work
was to understand the explanatory power of land
use in the context of past work that related eco-
system processes to precipitation and temperature
variables, we needed to use the same variables as
previous studies.

To compare these statistical models, we used a
method developed by Burnham and Anderson
(2001) that relies on likelihood theory to quantify

the amount of evidence for each model contained
in the data. This method uses Akaike’s Information
Criterion (AIC) as an indicator of the information
lost when a statistical model approximates truth
and ranks models according to the support for each
model contained in the observed data. Smaller
values of AICc (AIC corrected for bias due to small
sample size) indicate that the statistical model is
closer to the truth (never known); thus, the best
model has the lowest AICc value. The difference
between AICc values (Di) of competing models
provides insight into the relative strength of sup-
port in the data for the various models; differences
of 1–2 AICc units suggest substantial support, 3–7
AICc units indicate less support, and more than 10
units imply no support in the data (Burnham and
Anderson 2001).

We used a hierarchical approach to model
selection in which we first found the best model
with only climate parameters, then held those
parameters constant and chose the best model from
various combinations of soil variables in addition to
climate parameters. Finally, we held climate and
soil constant and included cropping information to
choose the best overall model of spatial variability.
Generating the statistical models in this order
means that any covariance between variables will
be attributed first to climatic variables and second
to soil variables, minimizing the inferred impor-
tance of cropping. Proc REG in SAS/STAT software
(SAS 2001, ver.8002; Cary, NC, USA) was used to
determine AICc for each model (See Appendices 2
and 3 at http://www.springerlink.com).

Table 1. Independent Variables Used in Statistical Models of Spatial and Temporal Variability of Net Primary
Productivity and Biomass Seasonality

Domain Independent Variable Name Meaning

MAP Mean annual precipitation (mm)
LMAP Log (MAP)
MAT Mean annual temperature (!C)
MAPMAT Interaction of MAP and MAT
Clay Soil percent clay

Spatial

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Sand Soil percent sand
Ahor Depth of soil A horizon (cm)
Specific crops Percent of county harvested in each crop
Cultivation Total percent of the county cultivated
C3crops Percent of the county cultivated in C3 crops
C4crops Percent of the county cultivated in C4 crops
Pptdev Precipitation for each year (mm)
Tempdev Temperature for each year (!C)

Temporal

8
>>>>>><

>>>>>>:

*crop*dev Deviation from mean cultivation of *crop*
Cultdev Deviation from mean percent cultivated
C3cropsdev Deviation from mean percent cultivated in C3 crops
C4cropsdev Deviation from mean percent cultivated in C4 crops
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Impact of Cropping

We divided the counties into nine classes based on
cultivation intensity. Counties in class 0 are be-
tween 0% and 10% cultivated, counties in class 1
are between 10% and 20% cultivated, and so on.
Because no counties are more than 90% cropped,
only nine classes exist (0 through 8). Dividing the
counties into nine cultivation classes creates smal-
ler subregions, each with unique cultivation
intensity. For each class, we quantified spatial and
temporal variation in response variables (produc-
tivity and biomass seasonality). As an indicator of
spatial variation, we used the 9-year mean crop-
ping values to calculate a coefficient of variation for
ANPP, BNPP, season length, and date of maximum
NDVI in each class. To quantify temporal variation,
we calculated a coefficient of variation for each
county based on the nine observations from 1990
to 1998 and averaged those values across all
counties in each cropping class to determine a
single estimate of temporal variability for each
class. We used linear regression to compare these

spatial and temporal coefficients of variation
against cropping intensity.

Sensitivity Analysis

To generate an overall predictive model, we in-
cluded independent variables from the best spatial
and temporal models in the following categories:
climate, soil properties, weather deviations, and
cropping practices (actual values for each year ra-
ther than mean values or deviations from the
mean). For variables whose best spatial and
temporal models had different parameters for
cropping (that is, individual crop proportions versus
C3 and C4 crop proportions), we used the parameters
for the spatial model because they consistently ex-
plained a higher proportion of the overall variation.

We used this model to provide predictions of
production and biomass seasonality as a function of
the climate, soil, weather, and cropping variables
that were identified in the model selection process.
By varying one of the driving variables while
holding the remaining driving variables constant,

Table 2. Candidate Models for Spatial and Temporal Variation in Country-level Productivity and
Aboveground Biomass Seasonality for the US Great Plains

Domain Category Model Variables

Spatial

Climate

MAP MAP
8
>>>><

>>>>:

Log (MAP) LMAP
MAT MAT
Climate LMAP, MAT
Climate and interaction LMAP, MAT, MAPMAT

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Climate with
soil properties

Climate & clay Best climate parameters, clay
Climate & sand Best climate parameters, sand
Climate & Ahor Best climate parameters, Ahor

8
>>>>>>><

>>>>>>>:

Climate & texture Best climate parameters, clay, sand
Climate & clay and depth Best climate parameters, clay, Ahor
Climate & sand and depth Best climate parameters, sand, Ahor
Climate & texture and depth Best climate parameters, clay, sand, Ahor

Climate and soil
with cultivation
practices

Climate, soil & two dominant crops Best climate and soil parameters, corn, wheat8
>>>><

>>>>:

Climate, soil & major crops Best climate and soil parameters, corn, wheat,
soybeans, hay, sorghum

Climate, soil & cultivation Best climate and soil parameters, cultivation
Climate, soil & C3/C4 crops Best climate and soil parameters, C3 crops,

C4 crops

Temporal

Weather
Precipitation Pptdev(
Temperature Tempdev
Weather Pptdev, Tempdev

8
>>>>>>>>>>><

>>>>>>>>>>>:

Weather with
cultivation

Weather & two dominant crops Best weather parameters, corndev, wheatdev
Weather & major crops Best weather parameters, corndev, wheatdev,

soybeansdev, sorghumdev, haydev

8
>>>>>><

>>>>>>:
Weather & Cultivation deviation Best weather parameters, cultdev
Weather & deviation of C3

crops and C4 crops
Best weather parameters, C3 cropsdev,
C4 cropsdev
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we estimated how each process responds to chan-
ges in those variables. We quantified the predicted
response of production to changes in climate, soil,
weather, and cultivation. In addition, because
cropping intensity and cropping practices vary
across the region, we divided the region into nine
subregions (Figure 1) and examined the effect of
changes in cropping on production and biomass
seasonality in each subregion.

RESULTS

Spatial versus Temporal Variation

An overwhelming majority of the variation in both
ANPP and BNPP occurred in the spatial domain,
with only a fraction in the temporal domain
(Table 3). Similar to productivity, growing-season
length varied more over space than through time,
but total variation was much more evenly split for
date of maximum NDVI. Season length was the
only variable we examined that varied more
through time than space, with 80% of total varia-

tion occurring between times rather than between
locations.

Effect of Cultivation on Process Variance

Cultivation generally decreased the spatial and
temporal variability of primary production and
biomass seasonality, suggesting that cultivated
areas have more consistent ecosystem processes
from location to location as well as from year to
year (Figure 2). The one exception to the general
decrease in variability with cultivation was the
relationship between spatial BNPP variability and
cultivation, which our data suggested are positively
related.

Spatial Models

Spatial variability in aboveground production
explained nearly all of the total variation in ANPP
(Table 3). As a group, climate parameters (MAT
and MAP) were the most important set of inde-
pendent variables, accounting for over half of
overall variability in ANPP, whereas cropping

Table 3. Variance Partitioning Results for Productivity and Phenology Variables

Component Aboveground Productivity
Belowground
Productivity

Length of
Growing Season

Date of
Maximun NDVI

Mean County Value (n = 5670)

203 g/m2 117g/m2 203 days Day 171

Average Deviation from Mean

Spatial 69.3 g/m2 14.3 g/m2 8.9 days 18.8 days
Temporal 17.5 g/m2 9.8 g/m2 15.6 days 13.4 days

Components of Variation

Spatial 0.93 0.70 0.20 0.58
Temporal 0.07 0.30 0.81 0.42

Proportion of Spatial Variation Explained

Climate 0.59 0.29 0.41 0.26
Soil 0.04 0.06 0.02 0.01
Cultivation 0.31 0.31 0.11 0.29
Residual 0.06 0.35 0.47 0.44

Proportion of Temporal Variation Explained

Weather 0.11 0.19 0.07 0.03
Cultivation 0.28 0.11 0.01 0.03
Residual 0.61 0.70 0.92 0.93

NDVI, Nomalized Difference Vegitation Index.
Mean values are shown for each variables along with the average deviation in the spatial domain (mean deviation between long-term average county values) and the temporal
domain (mean deviation between county values for individual years and long-term county averages). Also shown is the amount of overall variation occuring in the spatial and
temporal domains, the proportion of variation that can be attributed to specific driving variables and the amount of overall variation that is explained by the best statistical
regression models.
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intensity accounted for an additional 31% and soil
properties explained only a tiny fraction. In the
overall best model for spatial ANPP variation, our
results indicated positive relationships between
both MAP and ANPP and MAT and ANPP. Both
sand and clay were negatively related to ANPP
when cropping practices were not included (cli-
mate and texture model), but these relationships
became positive after accounting for cultivation. In
addition to the effect of climate and soil properties,
our results also indicated positive correlations be-
tween spatial cropping practices and ANPP pat-
terns.
Spatial variation in BNPP explained approxi-

mately two-thirds of the total variation, with crop-
ping practices and climatic conditions accounting
for 30% and 29%, respectively, whereas soil prop-
erties contributed 5%. We found positive relation-
ships between BNPP and both MAP and MAT,
whereas all three soil variables were negatively re-
lated to BNPP, implying that belowground produc-
tion was greater in fine-textured soils and soils with
shallow A horizons than in coarse soils or soils with
deep A horizons. The best overall model for BNPP
included countywide proportions of C3 and
C4 crops, rather than proportions of individual
crops. Belowground NPP was negatively related to
the abundance of C3 crops but positively related to
C4 crops—a pattern consistent with the fact that
C4 crops, (primarily corn and sorghum), are ex-
tremely productive, whereas C3 crops, (primarily
wheat and soybeans), are less productive.

Models for spatial variability did not perform as
well for the seasonality variables as they did for
the production variables. The best model for
growing-season length explained slightly over half
of the overall variation, of which 40% was
derived from climate parameters. Soil properties
and cultivation practices accounted for only a very
small fraction of the variation in season length.
Season length was positively related to MAP and
negatively related to MAT, results that are both
consistent with growing-season regulation by
limited late-season water availability. Sand and
clay were both negatively related to season length.
Four of the five crops were negatively related to
season length, which is to be expected because
crops typically initiate growth later than native
vegetation and are harvested before native vege-
tation stops growing.

For date of maximum NDVI, the best model ex-
plained over half of the observed variation, with
the largest fraction coming from cropping practices,
slightly less from climatic conditions, and essen-
tially nothing from soil properties. When cultiva-
tion is included in the model, MAP is negatively
related to date of maximum NDVI, but it is posi-
tively related in the absence of cultivation, whereas
MAT is negatively related to date of maximum
NDVI. Clay displayed a negative relationship with
date of maximum NDVI, whereas the relationship
with sand was small. Of the five crops examined,
wheat and hay were both negatively related to date
of maximum NDVI.

Figure 2. Relationship
between cropping
intensity and spatial (A)
and temporal (B)
coefficient of variability
(CV) in above- and
belowground production
and spatial (C) and
temporal (D) CV in the
length of the growing
season and date of
maximum Normalized
Difference Vegetation
Index (NDVI). ANPP,
aboveground net
primary production;
BNPP, belowground net
primary production;
LENGTH, length of
growing season; DATEM,
date of maximum NDVI.
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Temporal Models

Our best model for temporal variability in ANPP
explained less than half of the variation; cropping
accounted for most of the explained variation, and
weather explained only 11%. Precipitation devia-
tion was positively related to temporal variations in
ANPP. Temperature deviations were also positively
related to ANPP, but the slope of the relationship
was lower than the slope of the precipitation rela-
tionship. Temporal patterns of cropping intensity of
all five crops were positively related to ANPP.

The best model for temporal variability in BNPP
explained less than a third of the total variation,
most of which was attributed to weather, with
only a small fraction due to cropping. Variation
in BNPP was positively related to precipitation
deviation and negatively related to temperature

deviation. The relationship between cropping and
BNPP depended on the particular crop. Cropping
intensity of wheat, corn, and sorghum was posi-
tively related to BNPP variations, whereas crop-
ping intensity of hay and soybean was negatively
related. Our best temporal models for both sea-
sonality variables explained only a small fraction
of the total variation. The best model for growing-
season length accounted for only 8% of the vari-
ation, most of which is due to weather. Similarly,
the best model for date of maximum NDVI ex-
plained 7% of the variation.

Sensitivity Analysis

Because our models were not particularly success-
ful for the seasonality variables, we conducted
sensitivity analyses only for the response of

Figure 3. Sensitivity of above- and
belowground production to changes in
mean annual precipitation (MAP) (A),
mean annual temperature (MAT) (B),
annual precipitation (C), annual
temperature (D), soil percent sand and
clay (E), and percent of area under
cultivation (F) in the US Great Plains.
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production to changes in driving variables. We
generated regional predictions of ANPP and BNPP
for changes in MAP, MAT, temperature, precipita-
tion, soil percent sand, and cropping intensity.
Our analysis suggested that a 20% decrease in

MAP would decrease ANPP and BNPP by 24 and
2.5 g m)2, respectively (Figure 3). Because our
MAP variable is log-transformed, it has nonlinear
effects on dependent variables. Consequently, our
estimates of increases in ANPP and BNPP were only
19 and 2.3 g m)2, respectively, or slightly less than
the decreases. By contrast, our models implied a
much weaker response of production to 20%
changes in annual precipitation, with ANPP
changing only 8.6 g m)2 and BNPP changing only
5 g m)2.
Changes in MAT of ±2!C caused modest in-

creases for ANPP and BNPP of 2.9 and 2.8 g m)2,
respectively. Changing annual temperature
by ±2!C resulted in a similar positive ANPP change
of 2.6 g m)2, but produced a negative response in
BNPP of 1.1 g m)2. Our analysis of the impact of
altered soil texture predicted that ANPP was posi-
tively related to soil percent sand and clay, and
20% decreases and increases in sand and clay
caused a decrease of 14 g m)2 and an increase of
15 g m)2 respectively. On the other hand, BNPP
showed a negative relationship with sand and clay,
increasing by 4.1 g m)2 when sand and clay were
lowered by 20% and decreasing by 4.5 g m)2 when
sand and clay were increased by 20%.
Modifications to cropping intensity had a large

positive impact on ANPP, with a predicted ANPP
decrease of 26 g m)2 and an increase of 27 g m)2 for
50% changes in cropping. We expect BNPP to have
a very slight negative relationship with cropping

intensity, with increases of 0.5 g m)2 or decreases
of 0.7 g m)2 when cropping decreases or increases
by 50%, respectively.

To further characterize the influence of crop-
ping on production, we conducted sensitivity
analyses for smaller areas within the US Great
Plains. We examined how changes of 50% in
cropping intensity would impact ANPP and BNPP
in nine subregions (Figure 1). We used the same
statistical model for all subregions, so differences
among subregions are a consequence of spatial
variation in crop distributions, not different
models. All crops were positively related to ANPP,
but the magnitude of the effect of changes in
cropping depended on the type of crops in each
subregion. Our results suggested that changes in
cropping would have the greatest effects on ANPP
in the central and northeastern four subregions
(Figure 4) and relatively minor effects in the
remaining five subregions. Belowground NPP was
negatively related to C3 crops but positively re-
lated to C4 crops, meaning that both the direction
and magnitude of BNPP changes depends on crop
type. Our analysis predicted minor (effect sizes
range from 1 to 4 g m)2) decreases in BNPP for
all subregions except CC, CE, and SW subregions
(see Figure 4). These areas have enough C4 crops
that the positive effect of C4 crops on BNPP out-
weighed the negative effect exerted by C3 crops.

DISCUSSION

Spatial versus Temporal Variability

By partitioning the observed process variation into
spatial and temporal components, we found that

Figure 4. Sensitivity of above- and
belowground production to changes in
cropping intensity for nine subregions
within the US Great Plains. ANPP,
aboveground net primary production;
BNPP, belowground net primary
production.
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variation in production occurs primarily in the
spatial domain (more variation between locations
than between years within a location), variation
in the length of the growing season is mostly
temporal (greater variability between years than
between locations), and variation in the date of
maximum NDVI is relatively evenly split between
the temporal and spatial domains. The perceived
importance of spatial versus temporal controls
over ecosystem processes is always a function of
the extent (both spatial and temporal) of the data
set examined. Because this study examined a
relatively large area over only 9 years, it may be
biased toward finding spatial controls to be more
important. Nevertheless, our results are consistent
with previous studies of regional- and site-level
production trends, which have shown very tight
relationships between aboveground production
and long-term MAP in grasslands (Lauenroth
1979; Sala and others 1988) but a weaker link,
observed as a lag in recovery from drought, be-
tween weather variations and production (Lau-
enroth and Sala 1992). The strong dependence of
primary production on long-term (spatial) controls
may be a consequence of the highly variable
weather conditions in the US Great Plains (Lau-
enroth and Burke 1995) and the life history traits
of the dominant plants, which are generally
perennial and heavily invested in belowground
structures. At any particular location, the vegeta-
tion is a combination of species that are adapted to
survive under the long-term climatic conditions
extant at that site. Interannual weather fluctua-
tions alter current conditions, but species assem-
blages remain relatively constant and the
vegetation is unable to respond optimally to the
altered conditions. By contrast, spatial fluctuations
in ecosystem processes represent the ecosystem’s
response to long-term climatic conditions, in areas
where the vegetation is adapted to maximize
production under those conditions. When Paruelo
and others (1999) compared the spatial and tem-
poral relationships between precipitation and
ANPP across a precipitation gradient in the Great
Plains, they found that ecosystems in the center of
the Great Plains precipitation gradient are more
responsive to temporal variation in precipitation
than ecosystems on either end of the gradient.
This suggests that responsiveness through time is
at least partially a function of plant community
composition.

The relatively even split between spatial and
temporal variation shown by date of maximum
NDVI implies that it is influenced by both short-
and long-term controls. The large interannual

variability of growing-season length suggests that
the start and/or the end of the growing season
(which combine to dictate the length) are strongly
influenced by interannual processes, potentially
weather. Early-season temperature patterns can
influence the onset of growth (Washitani and
Masuda 1990), and precipitation has been shown
to influence late-season developmental processes
(Dickenson and Dodd 1976). Because the end of
the growing season is often controlled by water
availability, it is not surprising that growing-season
length has greater temporal variability than the
date of maximum NDVI.

Effect of Cropping on Process Variance

We found that, with the exception of spatial var-
iability in BNPP, the magnitude of spatial and
temporal variability in ecosystem processes are
generally lower in areas with heavy cropping
intensity. Similar findings for areas of high-
intensity cropping have also been reported in
studies of temporal patterns (Buyanovsky and
others 1987; Lauenroth and others 2000). These
results are not surprising because crops have been
selected for consistent yield rather than their
ability to take advantage of especially favorable
years or locations, and a relatively small number
of cultivars are used for each crop throughout the
entire region (Martin and others 1976). We
anticipate that the negative relationship between
BNPP spatial variability and cropping is the con-
sequence of cropping generally having a negative
impact on BNPP (Bradford and others 2005b) and
being most prevalent in highly productive areas
(Figure 1). Decreasing BNPP in only part of pro-
ductive areas causes high variability between
cropped and uncropped sites and commensurately
elevated spatial variability. This positive effect of
cropping is not seen in temporal BNPP variation
because the variability of interannual BNPP pat-
terns is not increased by cultivation.

Controls over Aboveground Net Primary
Production Patterns

Our statistical model for spatial ANPP patterns ex-
plained a very high proportion of the observed
variation and suggested that climatic conditions are
the most important influences on ANPP, followed
closely by cropping practices. In contrast to the
findings of other recent analyses (Veron and others
2002), soil properties explained only a small frac-
tion of production variation and thus contributed
very little to our statistical models. The effect that
MAP exerts on ANPP has been reported in many
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previous studies (for example, Lauenroth 1979;
Sala and others 1988; Lauenroth and others 2000),
but the positive relationship that we observed be-
tween MAT and ANPP is contradictory to some
previous studies. For example, Epstein and others
(1996, 1997) found a negative relationship be-
tween MAT and ANPP in native grasslands, and
Veron and others (2002) reported a similar result
for winter wheat.
Because silty soils are often favored for culti-

vation, the higher ANPP observed for fine-tex-
tured soils may simply be a consequence of those
soils being more heavily cropped. When cropping
is included in the model, it explains much of the
ANPP patterns in the relatively moist and pro-
ductive central, east, and northeast parts of the
region (Figure 1), leaving soil texture to account
for ANPP variations in more xeric areas. Contrary
to our observation of higher productivity on fine-
textured soils, the inverse texture effect (Noy-Meir
1973) predicts that, in semi-arid ecosystems,
coarse-textured soils will enable greater water
penetration, minimize evaporation losses, and
therefore be more productive than fine-textured
soils. In an analysis of a smaller area within the
US Great Plains, Paruelo and others (2001) found
that land use was the most important predictor of
ANPP. Our finding that climate is slightly more
important is very likely a consequence of the
greater spatial extent, and therefore the greater
overall climatic variation, in our data set. The
weak relationship between soil properties and
ANPP is at least partly a consequence of the fact
that we examined a relatively dry region, where
water limitation is of central importance. Soil
properties are likely to be more important in
wetter areas that are less limited by water. The
positive relationship between cropping intensity of
the five major crops and ANPP is consistent with
our expectation that cropping would increase
ANPP by altering carbon allocation ratios to favor
aboveground structures (Bradford and others
2005b).
Our temporal ANPP model indicated that both

precipitation and temperature had positive effects.
Although temporal trends in precipitation are
known to have a positive influence on ANPP,
(Lauenroth and Sala 1992; Briggs and Knapp
1995), the positive effect found for temperature is
surprising because higher temperatures should de-
crease water availability and thus have a negative
impact on productivity. We observed that cropping
intensity for all five crops was positively related to
ANPP, possibly as a result of increased carbon
allocation to aboveground structures and/or in-

creased resource availability as a consequence of
irrigation and fertilization.

Controls over Belowground Net Primary
Production Patterns

Our spatial model for BNPP explained nearly two
thirds of the observed variation. We found that
BNPP had a positive relationship with MAP, which
is consistent with general observations of total
production and water availability in this region
(Lauenroth and others 1999). Lower BNPP in
coarse-textured soils is difficult to understand, but
it may be a consequence of the inverse texture ef-
fect, which causes coarse soils in xeric areas to have
greater water availability and subsequently less
belowground inputs while also causing coarse soils
in mesic areas to have less water availability and
decreased total productivity. The negative effect of
soil depth is likely a consequence of cropping
simultaneously decreasing soil depth via water and
wind erosion and decreasing BNPP via altered
carbon allocation (Bradford and others 2005b).

When we modeled temporal variability as a
function of deviations in weather and cropping,
we found that weather conditions accounted for
the largest proportion of temporal BNPP patterns.
Our model for temporal variation in BNPP indi-
cated that there was a positive relationship be-
tween BNPP and precipitation but a negative
relationship between BNPP and temperature.
These results are likely a consequence of the fact
that higher precipitation increases water avail-
ability whereas higher temperatures decrease wa-
ter availability.

Controls over Biomass Seasonality

Although our spatial models for biomass seasonal-
ity were relatively successful, the temporal models
of both seasonality variables explained only a small
fraction of the observed variation. Our calculations
of the end of the growing season are actually esti-
mates of the time when plants lose green biomass
as a consequence of switching from vegetative to
reproductive growth. For native plants, the timing
of this change is somewhat elastic and will be
controlled by either temperature or precipitation,
depending on which of these conditions first
becomes limiting. Consistent with the expectations
implied by these controls, we observed a positive
relationship between MAP and growing-season
length and a negative relationship between MAT
and growing-season length. The positive relation-
ship for MAP is likely a consequence of the fact that
a higher MAP will increase water availability late in
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the season, causing longer growing seasons
(Jobbagy and others 2002). Although warmer
spring temperatures are likely to promote earlier
vegetative growth, thereby potentially lengthening
the growing season, high temperatures late in the
season will decrease water availability, and this,
strong negative effect may outweigh that positive
effect, thereby causing a shorter growing season
(Jobbagy and others 2002). We found that the
abundance of most of the crops was negatively
related to growing-season length, which is to be
expected because crops typically initiate growth
later than native vegetation and, relative to native
plants, are characterized by a consistent and uni-
form development that enables predictable harvest
schedules.

The influence of MAP on date of maximum
NDVI depended on whether the effects of cultiva-
tion were included in the model. A positive rela-
tionship between MAP and NDVI in the absence of
cultivation has been reported previously (Jobbagy
and others 2002) and can be attributed to the fact
that increased water availability causes increased
growth later in the season. The negative relation-
ship when cultivation is accounted for was unex-
pected, but may be a result of MAP having a greater
influence on native vegetation than on crops.
Because production is more tightly linked to MAP
in native vegetation than in cultivated areas
(Lauenroth and others 2000; Bradford and others
2005b) and native vegetation tends to develop
earlier than most crops, areas with higher MAP
have proportionally more early-season than late-
season growth.

We found that MAT is negatively related to
date of maximum NDVI, probably because war-
mer temperatures facilitate an earlier start of the
growing season (Jobbagy and others 2002) as well
as a more rapid decrease in available water. In
agreement with other recent work (Guerschman
and others 2003), our results indicate that the
impact of cultivation on biomass seasonality de-
pends on the specific crop. Wheat is cultivated as
a winter crop in much of the region, has very
early spring development (Martin and others
1976), and was correlated with an early date of
maximum NDVI. Hay consists of perennial plants
that, unlike many other crops, do not grow from
seed and thus has relatively rapid initial growth
that can lead to an early date of maximum NDVI.
By contrast, corn, soybeans, and sorghum have a
all later date of maximum NDVI, probably be-
cause these crops require warmer soil conditions
and are therefore planted and harvested relatively
late in the season.

In general, our models performed better for
spatial patterns than temporal patterns, and better
for production than biomass seasonality. This result
implies that the controls over temporal variation
and seasonality are not as well understood as those
that influence spatial patterns and production and
therefore warrant more attention in the future. At
the very least, it suggests that temporal variation
and biomass seasonality do not respond to the
environmental controls as we represented them in
this study. We might have had better success in the
temporal domain and with biomass seasonality if
we had divided both climate and weather into
seasonal components (for example, early-season
temperature, mid- and late-summer precipitation)
and/or represented soil properties as indices with
known relevance to water dynamics (that is, soil
water-holding capacity) rather than simple mea-
sures of soil texture. In addition, our independent
variables for temporal patterns included only
weather and cropping conditions for the current
year, and it is possible that conditions in previous
years influence both production and biomass
seasonality.

Sensitivity Analyses

We used the best overall models for production to
estimate how changes in environmental conditions
could impact ANPP and BNPP. These sensitivity
analyses suggest that ANPP is more susceptible to
variations in precipitation and cropping, whereas
BNPP is equally sensitive to changes in climate,
weather, and soil conditions. Although the pre-
dicted response of ANPP to changing precipitation
and temperature is not surprising, our results do
indicate that ANPP has substantial sensitivity to
cropping intensity. Changes in cropping intensity
of 50% produce ANPP changes greater than those
predicted for 20% changes in MAP, implying that
production in the US Great Plains is highly sensitive
to changes in cropping; thus, long-term predictions
of carbon cycling in this region should take the
impact of cropping into consideration.

Our models suggest that production responds in a
markedly different way to changes in climate than it
does to changes in weather—a result that demon-
strates the potential limitations of studies that use
spatial patterns to predict ecosystem responses to
temporal changes. Previous investigators have re-
ported that ecosystems respond more strongly
to climate than to weather, and have suggested
that this delayed response, or lag effect is a conse-
quence of vegetation structure requiring time to
respond to altered conditions (Lauenroth and Sala
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1992). We predicted dramatically different magni-
tudes of ANPP response to changes in long-term
versus interannual precipitation and even different
directions in the BNPP response to long-term versus
interannual temperature, implying that relation-
ships in the spatial domain may not accurately
predict the immediate response of production to
climate change. These discrepancies have implica-
tions for the commonly used ‘‘space for time’’ sub-
stitution, in which spatial patterns are used to gain
insight into the consequences of temporal changes.
We examined production response to altered

cropping intensity in smaller areas within the US
Great Plains and found that although ANPP in-
creases in all areas, the magnitude is highly variable
and BNPP can have very small positive or negative
changes. These variations in production response
between subregions show that the effect of crop-
ping on ecosystem processes depends on the spe-
cific cropping practices followed in a given area. In
addition, they provide insight into the relative
importance of different driving variables on eco-
system processes. As expected, climate patterns and
weather conditions both accounted for a sub-
stantial proportion of process variation. This study
is one of the first to consider the impact of land use
on large-scale ecosystem processes, and our results
indicate that cropping has a substantial impact on
these processes, which in many cases proved to be
more important than climate or weather. Although
we did not explicitly examine the importance of
practices linked to cropping—notably, irrigation
and fertilization—our conclusion that cropping is a
major driver of ecosystem processes provides strong
evidence that the large-scale and long-term con-
sequences of these practices warrant further
investigation.
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